Sprayer Calibration (Tank \& Backpack)

1. Select the proper equipment for the job to be done. This includes nozzles, pumps, hoses, pressure regulators, etc...
2. Do not use pesticides during calibration. Dy'on ${ }^{\circledR}$ is recommended to aid in determining spray pattern, droplet size, coverage and pressure.
3. Calibrate properly and check calibration periodically.
4. Record all information on back of this sheet.

TANK SPRAYER AND BACKPACK CALIBRATION:

(Flat fan nozzles and shower heads are generally used in broadcast applications, solid cone for spot treating.)

1. Measure a $20^{\prime} \times 50^{\prime}$ area or $1000 \mathrm{ft}^{2}$ (For best accuracy, test areas of $1000 \mathrm{ft}^{2}$ are recommended. If doing an area less than $1000 \mathrm{ft}^{2}$, input that known area in ft^{2} in the formula on the back of this page.)
2. Fill sprayer with water (and optional Dy'on ${ }^{\circledR}$)
3. Using a stop watch, time the applicator spraying the $1000 \mathrm{ft}^{2}$ area. (Keep walking speed and pressure constant. Use of Dy'on ${ }^{\circledR}$ will show light heavy a skipped areas of application.) Do more than once and record the average time.
4. Now spray into a measured container for the amount of time you recorded spraying $1000 \mathrm{ft}^{2}$ and record in fl oz. Divide your fl oz caught by 128 and you will now know your gal/1000 ft^{2}. To determine gal/Acre. Multiply your spray volume gal/1000 ft^{2} by 43.56 . (Formula and useful conversion on back)

EXAMPLE -

After spraying an area of $1000 \mathrm{ft2}$ it took us 1 min to apply that area. We did a catch into our container for $1 \mathbf{m i n}$ and measured 256 fl oz . Now we can calculate gal/1000 ft^{2}; $256 \div \mathbf{1 2 8} \mathbf{= \mathbf { 2 } \mathbf { ~ g a l / 1 0 0 0 f t }}{ }^{2}$

DETERMINING AMOUNT OF PRODUCT TO ADD TO SPRAY SOLUTIONS PER TANK:

Calculation / $1000 \mathrm{ft}^{2}$ -

1. Amount of water in tank (gal) \div Spray volume (gal/100oft²) $=$ The amount of area you will cover with that volume in $1000 \mathrm{ft}^{2}$. Example; We have a 200 gallon tank that has been calibrated to put out $2 \mathrm{gal} / 1000 \mathrm{ft}^{2} .200 \div \mathbf{2}=100\left(1000 \mathrm{ft}^{2}\right.$)
2. Label rate per $1000 \mathrm{ft}^{2} \times$ coverage area in $1000 \mathrm{ft}^{2}=$ amount of product in tank.

Calculation / Acre -

1. Amount of water in tank (gal) \div Spray volume $\left(\mathrm{gal} / 1000 \mathrm{ft}^{2}\right) \div 43.56=$ The amount of area you will cover with that volume in Acres. Example; We have a $\mathbf{2 0 0}$ gallon tank that has been calibrated to put

2. Label rate per $1000 \mathrm{ft}^{2} \times 43.56 \times$ coverage area in Acres $=$ amount of product in tank.

RegalChem.com

NOTES AND CONVERSIONS

SPRAYER INFORMATION					
Sprayer Information					
Sprayer ID					
Pump PSI					
Spray gun					
Nozzle Type					

CALIBRATION INFORMATION

Amount caught in $\mathrm{fl} \mathrm{oz} \mathrm{(a)}$

Area in $\mathrm{ft}^{2}(b)$

Time to spray
area in seconds

Formula to get GAL/1000 $\mathrm{ft}^{2}=$
$((a) \times 1000) /(128 \times(b))$

USEFUL CONVERSION

-1 GALLON = 128 FLUID OUNCES

- 1 GALLON = 4 QUARTS
-1 QUART = 32 FLUID OUNCES
- 1 PINT = 16 FLUID OUNCES
- 2 PINTS = 1 QUART
-1 TABLESPOON = 1 OUNCE
- 3 TEASPOONS = 1 TABLESPOON
- 1 POUND = 16 OUNCES
- 1 ACRE $=43.560 \mathrm{FT}^{2}$
- 43.560 FT $^{2}=43.56\left(1000\right.$ FT $\left.^{2}\right)$

